DNA cleavage and methylation specificity of the single polypeptide restriction–modification enzyme LlaGI
نویسندگان
چکیده
LlaGI is a single polypeptide restriction-modification enzyme encoded on the naturally-occurring plasmid pEW104 isolated from Lactococcus lactis ssp. cremoris W10. Bioinformatics analysis suggests that the enzyme contains domains characteristic of an mrr endonuclease, a superfamily 2 DNA helicase and a gamma-family adenine methyltransferase. LlaGI was expressed and purified from a recombinant clone and its properties characterised. An asymmetric recognition sequence was identified, 5'-CTnGAyG-3' (where n is A, G, C or T and y is C or T). Methylation of the recognition site occurred on only one strand (the non-degenerate dA residue of 5'-CrTCnAG-3' being methylated at the N6 position). Double strand DNA breaks at distant, random sites were only observed when two head-to-head oriented, unmethylated copies of the site were present; single sites or pairs in tail-to-tail or head-to-tail repeat only supported a DNA nicking activity. dsDNA nuclease activity was dependent upon the presence of ATP or dATP. Our results are consistent with a directional long-range communication mechanism that is necessitated by the partial site methylation. In the accompanying manuscript [Smith et al. (2009) The single polypeptide restriction-modification enzyme LlaGI is a self-contained molecular motor that translocates DNA loops], we demonstrate that this communication is via 1-dimensional DNA loop translocation. On the basis of this data and that in the third accompanying manuscript [Smith et al. (2009) An Mrr-family nuclease motif in the single polypeptide restriction-modification enzyme LlaGI], we propose that LlaGI is the prototype of a new sub-classification of Restriction-Modification enzymes, named Type I SP (for Single Polypeptide).
منابع مشابه
An Mrr-family nuclease motif in the single polypeptide restriction–modification enzyme LlaGI
Bioinformatic analysis of the putative nuclease domain of the single polypeptide restriction-modification enzyme LlaGI reveals amino acid motifs characteristic of the Escherichia coli methylated DNA-specific Mrr endonuclease. Using mutagenesis, we examined the role of the conserved residues in both DNA translocation and cleavage. Mutations in those residues predicted to play a role in DNA hydro...
متن کاملThe Type ISP Restriction–Modification enzymes LlaBIII and LlaGI use a translocation–collision mechanism to cleave non-specific DNA distant from their recognition sites
The Type ISP Restriction-Modification (RM) enzyme LlaBIII is encoded on plasmid pJW566 and can protect Lactococcus lactis strains against bacteriophage infections in milk fermentations. It is a single polypeptide RM enzyme comprising Mrr endonuclease, DNA helicase, adenine methyltransferase and target-recognition domains. LlaBIII shares >95% amino acid sequence homology across its first three p...
متن کاملThe single polypeptide restriction–modification enzyme LlaGI is a self-contained molecular motor that translocates DNA loops
To cleave DNA, the single polypeptide restriction-modification enzyme LlaGI must communicate between a pair of indirectly repeated recognition sites. We demonstrate that this communication occurs by a 1-dimensional route, namely unidirectional dsDNA loop translocation rightward of the specific recognition sequence 5'-CTnGAyG-3' as written (where n is either A, G, C or T and y is either C or T)....
متن کاملThe LlaGI restriction and modification system of Lactococcus lactis W10 consists of only one single polypeptide.
The naturally occurring 12.1-kb plasmid, pEW104, in Lactococcus lactis ssp. cremoris W10 was found to confer decreased bacteriophage sensitivity to its host. Plasmid pEW104 encodes a non-classic restriction and modification (R/M) system, named LlaGI, consisting of only one single polypeptide. Analysis of the amino acid sequence revealed the presence of a catalytic motif and seven helicase-like ...
متن کاملDNA cleavage by Type ISP Restriction–Modification enzymes is initially targeted to the 3′-5′ strand
The mechanism by which a double-stranded DNA break is produced following collision of two translocating Type I Restriction-Modification enzymes is not fully understood. Here, we demonstrate that the related Type ISP Restriction-Modification enzymes LlaGI and LlaBIII can cooperate to cleave DNA following convergent translocation and collision. When one of these enzymes is a mutant protein that l...
متن کامل